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Abstract

Background
and aims

Aster pyrenaeus (Asteraceae) is an endangered species, endemic to the Pyrenees and Cantab-
rian Mountain ranges (Spain). For its long-term persistence, this taxon needs an appropriate
conservation strategy to be implemented. In this context, we studied the genetic structure
over the entire geographical range of the species and then inferred the genetic relationships
between populations.

Methodology Molecular diversity was analysed for 290 individuals from 12 populations in the Pyrenees and
the Cantabrian Mountains using inter simple sequence repeats (ISSRs). Bayesian-based ana-
lysis was applied to examine population structure.

Principal results Analysis of genetic similarity and diversity, based on 87 polymorphic ISSR markers, suggests
that despite being small and isolated, populations have an intermediate genetic diversity
level (P % ¼ 52.8 %, HE ¼ 0.21+0.01, genetic similarity between individuals ¼ 49.6 %).
Genetic variation was mainly found within populations (80–84 %), independently of mountain
ranges, whereas 16–18 % was found between populations and ,5 % between mountain
ranges. Analyses of molecular variance indicated that population differentiation was highly
significant. However, no significant correlation was found between the genetic and geograph-
ical distances among populations (Rs ¼ 0.359, P ¼ 0.140). Geographical structure based on
assignment tests identified five different gene pools that were independent of any particular
structure in the landscape.

Conclusions The results suggest that population isolation is probably relatively recent, and that the out-
breeding behaviour of the species maintains a high within-population genetic diversity. We
assume that some long-distance dispersal, even among topographically remote populations,
may be determinant for the pattern of genetic variation found in populations. Based on these
findings, strategies are proposed for genetic conservation and management of the species.
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Introduction
In alpine environments, the distribution of species is
often fragmented due to pronounced mountainous top-
ography and associated abiotic heterogeneity on small
spatial scales (Kudo 1991; Molau 1993; Körner 2003).
Alpine plant species usually form local populations of
various sizes, exhibiting a marked ability for extended
local persistence due to perenniality and/or clonality
(Bliss 1971; Körner 2003). The characteristics of frag-
mented populations have profound consequences on
the species genetic patterns, which are crucial to eluci-
date for adequate management of endangered popula-
tions and species. Genetic variation within plant species
is determined by a number of different factors such as
reproductive mode (sexual vs. clonal), breeding system
(outcrossing vs. selfing), life-history traits, population
history, geographical range or selective constraints
(Loveless and Hamrick 1984). These factors are also
mainly responsible for the way the total genetic vari-
ation of a species is partitioned between and within
populations (Hamrick et al. 1992).

The spatial isolation that is often accompanied by a re-
duction in the levels of gene flow leads to isolation by dis-
tance and to a high genetic differentiation among
populations. However, small-scale heterogeneity and
spatially differentiated selective constraints can lead to
high levels of diversity within populations (Gugerli et al.
1999; Till-Bottraud and Gaudeul 2002). For entomophil-
ous plant species, small, isolated populations may
provide too few mates and little attraction or reward for
pollinators (Kunin 1997; Dauber et al. 2010), leading to
a reduction in the quality and quantity of pollination ser-
vices (Wilcock and Neiland 2002), particularly exacer-
bated when rare plants are surrounded by other
flowering species (Duncan et al. 2004; Lazaro et al.
2009). This will reduce seed set and gene flow within
and between populations. Such factors combine to
erode genetic diversity within populations and enhance
between-population differentiation (Rathcke and Jules
1993; Steffan-Dewenter and Tscharntke 1999). Moreover,
species in small, isolated populations may lose genetic di-
versity through stochastic processes such as genetic drift
and become less fit due to increased inbreeding (Ellstrand
and Elam 1993; Byers and Waller 1999) and Allee effects,
which can eventually lead to extinction (Groom 1998).
Increasing population size and maximizing genetic
diversity are among the primary goals of conservation
management (Frankham et al. 2002; Van Dyke 2008).

The pattern of geographical variation in population
genetic diversity and differentiation will be influenced by
both historical and contemporary changes in population
size and gene flow (Vucetich and Waite 2003). The

effect of population history is especially significant for
species that have survived the long glacial episodes of
the Pleistocene because their current distribution and
genetic pattern is the result of successive range shifts
during glacial and interglacial cycles (Hewitt 2004).

Unlike plants from the Alps, very few studies have
focused on the genetic diversity of plant populations in
the Pyrenees (Segarra-Moragues and Catalán 2003,
2010; Segarra-Moragues et al. 2007; Lauga et al. 2009)
and even less on those in the Cantabrian Mountains
(Peredo et al. 2009); thus the present study provides
new insights into genetic diversity patterns across the
Pyrenees and the relationship between Pyrenean and
Cantabrian Mountain ranges.

Aster pyrenaeus DC (Asteraceae) is a critically endan-
gered perennial species, endemic to the French Pyrenees
and Cantabrian Mountains (Cambecèdes and Largier
2003). The species was first identified and collected
from an unknown Pyrenean population and planted in
the Royal Gardens of the Kingdom of France around
1685. Native populations were extensively harvested by
botanical collectors until the early 20th century (Cambe-
cèdes and Largier 2003) and the species was thought to
be nearly extinct in the early 1990s with only three
known populations. However, because it prefers very
steep mountain slopes, often with difficult access, its
current distribution remained unknown. Today, 14 iso-
lated populations (sometimes very small) are known in
France and Spain (Cambecèdes and Largier 2009). The
species has been protected since 1982 in France and
1990 in Spain. Recently, the main threat to the species
has changed from collectors to the decrease in grazing
animals, favouring the expansion of competitive
species and habitat closure (Cambecèdes and Largier
2009). Thus, during the last decade, A. pyrenaeus has
been a high priority for conservation efforts from both
the French government (Directive Habitats 92/43/CEE)
and the autonomous region of Asturias (Decreto 65/
1995), increasing the urgency to document and under-
stand the genetic structure of this endangered plant
species. Previous field studies indicated that
A. pyrenaeus is mainly an outcrossing species and pro-
duces wind-dispersed achenes with a pappus (Guzman
et al. 2003; Garcı́a 2004).

Given its biology, history and current distribution, we
expect the populations of A. pyrenaeus to exhibit low
levels of genetic diversity and high population differenti-
ation and, consequently, smaller populations at greater
risk of extinction. Indeed, many rare endemic species
show low genetic diversity compared with widespread
taxa [i.e. Cycas guizhouensis K.M. Lan & R.F. Zou (Xiao
et al. 2004), Chamaecrista semaphore Moench (Da Silva
et al. 2007)]. However, other rare species have been
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shown to present rather high levels of genetic diversity
[i.e. Nouelia insignis Franch. (Luan et al. 2006), Physeria
bellii Mulligan (Kothera et al. 2007)]. Nevertheless, the
current genetic pattern of A. pyrenaeus could mainly
result from the response of the species to glacial/post-
glacial climatic changes. Basic knowledge on the past
history and population dynamics of this species is indis-
pensable to implement a preservation programme. The
geographical structure of the genetic diversity still
needs to be characterized in order to define appropriate
sampling strategies for conservation purposes.

To characterize the genetic pattern of A. pyrenaeus, we
used the inter simple sequence repeat (ISSR) technique,
which has been widely applied in conservation genetics
(Xiao et al. 2004; Garcı́a-Gonzales et al. 2008; Crema
et al. 2009; Su et al. 2009) and to resolve phylogeographi-
cal issues (Graves and Schrader 2008; Li et al. 2008). We
first studied the within- and among-population genetic
diversity in the Pyrenees and Cantabrian Mountains. We
then inferred the genetic relationships between these
populations with respect to their geographical locations.
We used the results to establish recommendations for
conservation, management and restoration of this
endangered species. Finally, we propose a scenario
describing the history of A. pyrenaeus populations
during the last postglacial period.

Materials and methods

Studied species

Aster pyrenaeus (2n ¼ 18) is a perennial herb 40–100 cm
in height. It grows on calcareous rocky north- and east-
facing slopes between 500 and 2400 m a.s.l. The flower-
ing period extends from mid-July to mid-October
(Guzman et al. 2003). It is a gynomonoecious species
(the inflorescence has both hermaphroditic protandrous
yellow disc florets and pistillate blue–lilac ray florets)
mainly visited by Cephus sp. (Cephidae, Hymenoptera),
Neoascia podagrica (Syrphidae, Diptera) and Odontomya
ornata (Stratiomydae, Diptera) (Guzman et al. 2003).
Autonomous self-pollination has occasionally been
observed, suggesting that A. pyrenaeus cannot be
considered fully self-incompatible (Guzman et al. 2003;
Garcı́a 2004). The species spreads vegetatively by short
rhizomes and grows in clumps of numerous connected
neighbouring shoots (Guzman et al. 2003).

Sampling procedure

We studied 10 populations in the French Pyrenees and
two populations in the Cantabrian Mountain range in
northern Spain (Fig. 1, Table 1). Population sizes are
highly variable, ranging from 11 to �2500 individuals
(Table 1). Distances between populations varied from

1 km (PANL and PANH) to 400 km (CAU and DUJ; CAU
and BUL). The number of individuals sampled in each
population varied from 5 to 37, depending on population
size and the difficulty of accessing the study site
(Table 1). Sampling effort for populations TAC and CAU
(i.e. five individuals sampled) was low due to the difficult
access. Leaf material (one leaf per individual) was col-
lected from a total of 290 individuals and stored in
silica gel. DNA extraction was performed with the
DNeasy Plant Mini Kit (Qiagen, Paris, France) according
to the manufacturer’s protocol, using 40 mg of dried
leaf material. DNA concentration was determined by
spectrophotometry with the NanoDropTM ND-1000
(Thermo Scientific, Courtaboeuf, France).

ISSR procedure

Six of 49 ISSR primers produced clear and reproducible
bands, and were hence selected for further study. Poly-
merase chain reaction (PCR) amplification was per-
formed in a total volume of 25 mL, consisting of 20 ng
of DNA template, 1× PCR buffer, 1.5 mM MgCl2, 0.2 mM
dNTPs, 2 mM primer, 0.625 U Go Taq DNA (Promega,
France) and purified water. Each PCR cycle consisted of
the following steps: initial denaturation at 95 8C for
3 min, 38 cycles of 40 s denaturation at 95 8C, 40 s
annealing at the primer’s Tm (Table 2), 1 min extension
at 72 8C and a final 5 min extension at 72 8C. For each
primer, we determined the best annealing temperature
by performing a gradient PCR. The PCR products were
separated on 2 % agarose gels buffered with 1× TAE
for 2 h 30 min at 100 V, detected by staining with eth-
idium bromide and photographed under ultraviolet
light. Molecular weights were estimated using 50- and
100-bp DNA ladders (Promega). For all samples, PCR
reactions were carried out using the same thermocycler.
To assess the reproducibility of the ISSR patterns for each
primer, PCR reactions were repeated twice for 50
samples. No band variation was detected when the
two runs of a given DNA sample were compared. Positive
controls were systematically included in each PCR run
and in each electrophoresis gel to facilitate intergel com-
parisons, to check the efficiency of PCR, and to test for
the reproducibility of ISSR patterns. Negative controls
(without template DNA) were also included in every
run to test for contamination in the reagents.

Data analysis

Inter simple sequence repeat bands were scored as
present (1) or absent (0) and a binary matrix was manu-
ally constructed. Assuming that populations are in
Hardy–Weinberg equilibrium (FIS ¼ 0), the software
program AFLP-SURV v.1.0 (Vekemans et al. 2002) was
used to estimate within-population genetic diversity
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through the following parameters: percentage of poly-
morphic loci (P %), Nei’s (1978) unbiased expected
heterozygosity (He). Similarity of ISSR profiles between
individuals was calculated using Nei and Li’s (1979) simi-
larity index (S ¼ 2nxy/nx+ ny), where nx and ny refer to
the number of ISSR bands in individuals x and y, respect-
ively, and nxy is the number of bands shared by both indi-
viduals x and y. Only polymorphic bands were considered
in the index calculation. We checked the whole dataset
for private fragments in populations.

To analyse the genetic differentiation and geographic-
al structure of A. pyrenaeus populations, variation in ISSR
patterning was examined with analysis of molecular var-
iances (AMOVA) using ARLEQUIN v. 3.01 (Excoffier et al.
2005). Analysis of molecular variances was performed
at different hierarchical levels: (i) between all the 12

populations included in a global analysis, (ii) between
mountain ranges (Pyrenees vs. Cantabrians), and (iii)
between populations in a given mountain range (either
Pyrenees or Cantabrians). F-statistics were computed
under the random mating hypothesis with ARLEQUIN
v. 3.01 (Excoffier et al. 2005). This provided the unbiased
FST estimator u, following Weir and Cockerham (1984) for
which 95 % confidence intervals were obtained by boot-
strapping 1000 replicates over loci. Fisher’s exact tests
were performed, using Genepop v. 4 (Raymond and
Rousset 1995; Rousset 2008), on marker frequencies at
each locus between all pairs of populations to determine
whether significant differences in marker frequencies
existed between groups of individuals. To determine the
genetic relationships among populations, the AFLP-SURV
v. 1.0 (Vekemans et al. 2002) and the PHYLIP packages

Fig. 1 Geographical structure of 12 populations of A. pyrenaeus in the Pyrenees (1) and Cantabrian Mountains (2) calculated using
the STRUCTURE software v. 2.3.3. The pie charts give the proportions of the gene pools present in the population.
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(NEIGHBOR and CONSENSE; Felsenstein 1989) were used
to calculate pairwise Nei’s genetic distance (Nei 1978)
between each population, and to construct a neighbour-
joining (NJ) tree based on 10 000 permutated trees,
bootstrapped across loci. Isolation by distance was
tested by Mantel tests (10 000 permutations) performed
between pairwise estimates of FST(12FST) ratio and
the logarithm of geographical distance (natural
logarithm scale) for all samples (Rousset 1997) using
ARLEQUIN v. 3.01 (Excoffier et al. 2005). We next
applied a model-based clustering method to infer
genetic structure and define the most adequate

number of clusters in the whole dataset using the soft-
ware STRUCTURE v. 2.3.3 (Pritchard et al. 2000). We set
the number of clusters (K ) from 1 to 14 and ran 20 inde-
pendent runs for each K value. Each run consisted of a
burn-in period of 105 steps followed by 106 Markov
chain Monte Carlo repetitions, assuming an admixture
model, a uniform prior for alpha and correlated allele
frequencies with prior population information. We used
the ad hoc statistic DK to identify the most likely
number of clusters in the dataset (Evanno et al. 2005).
Because independent runs can produce different permu-
tations of the group labels, we used CLUMPP v. 1.1.1
(Jakobsson and Rosenberg 2007) to align the member-
ship coefficient matrices from the 20 highest likelihood
runs for each Kmax (Full Search algorithm with random
input order and 105 permutations to align the runs).
The CLUMPP output consists of the same permuted
matrices so that all replicates are as closely matched
as possible. In order to detect substructure, we again
applied the same Bayesian-based analysis within each
predefined cluster. We then assigned each individual to
a gene pool if the membership probability was .0.6
(Coulon et al. 2008).

Results

Within-population diversity

The six primer pairs used in the study generated a total
of 102 reliable ISSR bands, of which 87 were polymorphic

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Name, location, altitude and size of the 12 studied A. pyrenaeus populations. The PAN site consists of two populations separated
by �1 km (PANL and PANH).

Population location Population code Elevation (m) Longitude/latitude Sample size Population size

French Pyrenees

Cauterets CAU 1150 2827′W/42853′N 5 11

Cirque du Litor—Béost LIT 1400 2838′W/42857′N 29 33

Vallon de Tachet—Arrens valley TAC 1500 2835′W/42855′ N 5 20

Gerbe—Ossau valley GER 1350 2847′W/43800′N 30 1000

Montagne de Pan (low part)—Ossau valley PANL 600 2846′W/42858′N 26 50

Montagne de Pan (high part)—Ossau valley PANH 900 2846′W/42858′N 28 1000

Pic de Bergon—Aspe valley BER 1340 2852′W/42858′N 29 500

Laberouat—Aspe valley LAB 1615 3800′W/42857′N 27 100

Refuge de Laberouat—Aspe valley RELAB 1450 2859′W/42857′N 31 100

Piquet de Lhurs—Aspe valley LHU 1480 3801′W/42855′N 28 50

Cantabrian Mounts (Spain)

Bulne BUL 800 4850′W/43814′N 22 2500

Val del Duje DUJ 450 4848′W/43815′N 30 450

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Primers used in ISSR analyses of A. pyrenaeus,
annealing temperature (Tm in 88888C) and number of reliable and
polymorphic bands for each primer. B ¼ (C, G or T), D ¼ (A, G or
T), R ¼ (A or G), W ¼ (A or T) and Y ¼ (C or T).

ISSR sequence

5′ to 3′

Tm No. of bands

analysed

% of polymorphic

bands

BDB(ACA)5 50.6 20 90

WB(GACA)4 46.0 10 70

(GT)8C 46.0 9 78

(AC)8YG 54.8 18 100

(AG)8C 56.5 17 82

(TG)8RC 46.0 28 96
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(85.29 %; Table 2). Within populations the mean per-
centage of polymorphic loci (P %) reached 63.2 %,
ranging from 33.3 % (CAU and TAC) to 75.8 % (LHU;
Table 3). The expected heterozygosity (HE) reached on
average 0.21+0.02, and was between 0.13+0.01
(CAU and TAC) and 0.23+0.02 (GER and LHU). At the
species and the Pyrenees mountain range levels, P %
and HE were very similar (Table 3) but were lower in
the Cantabrians. The mean genetic similarity reached
49.7 % within populations. The LAB population had the
lowest genetic similarity (44.0 %) while the GER popula-
tion had the highest (55.7 %). No private fragments were
found in any population. In each population, P % and HE

were significantly and positively correlated (R2 ¼ 0.939,
P , 0.001). Furthermore, we detected no influence of
population size on molecular diversity (P %: R2 ¼ 0.072,
P ¼ 0. 400; HE: R2 ¼ 0.084, P ¼ 0.360).

Genetic differentiation and geographical structure

Whatever the hierarchical level considered, genetic vari-
ation was always much higher within populations
(80.68–84.02 %, AMOVA; Table 4) than among popula-
tions (15.98–18.01 %). FST values were substantially

similar (0.16–0.18 %), indicating a moderate among-
population differentiation. Pairwise FST ranged from
0.075 to 0.351; all values differed from zero (Table 5),
which was confirmed by global Fisher’s exact tests
(x2¼ 1227.8, d.f. ¼ 174, P , 0.001). In contrast, genetic
variation among mountain ranges was very low (�5 %)
but still highly significant (P , 0.001). The result of the
Mantel test indicated a limited isolation by distance,
because the pairwise genetic distances measured as
FST/(12FST) and the logarithm of the distance between
pairs of populations were not significant (Rs ¼ 0.359,
P ¼ 0.140). Neighbour-joining analysis based on Nei’s
genetic distances failed to support geographical cluster-
ing. Only three groups were significantly identified, with
moderate bootstrap support (.50 %; Fig. 2), i.e. Cantab-
rian populations, PANH and GER, and RELAB and LHU
from Ossau and Aspe Valley, respectively. Geographical
structure based on STRUCTURE revealed that two
genetic clusters (K ¼ 2) had the best ad hoc statistical
fit (Fig. 3). A substructure within each previous cluster
was found with DK ¼ 2 and 3 for the initial cluster A
and B, respectively (Fig. 1). As a result, five different
gene pools (A1, A2, B1, B2 and B3) were identified. Eight
individuals out of 290 were not assigned to a genetic
group with a membership probability .0.6. For the smal-
lest populations (CAU and TAC), the average membership
coefficients (qmean) were very high (0.99 and 0.98,
respectively), indicating nearly perfect assignment of
individuals. Only gene pool A1 was detected in these
small populations (Fig. 1). For larger populations, the
pattern was not well structured since we detected two,
three and four gene pools whatever the geographical
distribution of the populations. In LHU and RELAB popu-
lations, A2 was the dominant gene pool (qmean ¼ 0.99),
and A1 was the prevalent one in LIT, GER and PANH
(qmean ¼ 0.98, 0.89 and 0.96, respectively). For LAB and
BER populations, A1 (qmean ¼ 0.99 and 0.95, respectively)
and B1 (qmean ¼ 0.97 and 0.90, respectively) were the
dominant gene pools, while for PANL, population B3

was the main gene pool (qmean ¼ 0.95). Interestingly,
Cantabrian populations presented four gene pools in
nearly equal proportions (Fig. 1).

Discussion

Within-population diversity

Endemic and narrowly distributed plants usually show
lower levels of genetic diversity and higher levels of
genetic structure compared with their relatives with
wider distribution areas (Hamrick and Godt 1989;
Nybom 2004). This is probably caused by the more
accentuated effects of genetic drift and restricted
gene flow in the rarer plants (Hamrick and Godt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Genetic variability within the 12 A. pyrenaeus
populations studied.

Population P % HE +++++ SE Genetic

similarity (%)

CAU 33.3 0.13+0.01 49.0

LIT 68.9 0.20+0.02 50.3

TAC 33.3 0.13+0.01 54.6

GER 67.6 0.23+0.02 55.7

PANL 73.5 0.22+0.02 50.3

PANH 70.1 0.21+0.02 52.2

BER 67.8 0.20+0.01 45.1

LAB 73.5 0.22+0.02 44.0

RELAB 67.8 0.22+0.02 50.1

LHU 75.8 0.23+0.02 50.1

BUL 71.2 0.21+0.01 50.4

DUJ 66.7 0.21+0.02 45.5

Mean 63.2 0.21+0.02 49.7

Species level 98.8 0.27+0.01

Mountain range level

Pyrenees 97.7 0.27+0.01

Cantabrians 73.5 0.22+0.01
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1989; Nybom 2004). For the endemic A. pyrenaeus, we
revealed that whatever the mountain range or the
population within a mountain range, most of the

genetic diversity was found within populations. The
same trend was commonly reported in outcrossing
and/or perennial species (Hamrick et al. 1992). Aster

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 Pairwise estimated FST values among 12 populations of A. pyrenaeus. All values differed significantly from zero.

CAU LIT TAC GER PANL PANH BER LAB RELAB LHU BUL DUJ

CAU —

LIT 0.207 —

TAC 0.351 0.213 —

GER 0.170 0.095 0.210 —

PANL 0.207 0.160 0.240 0.125 —

PANH 0.175 0.080 0.135 0.147 0.136 —

BER 0.200 0.129 0.208 0.140 0.124 0.103 —

LAB 0.130 0.147 0.176 0.108 0.134 0.114 0.075 —

RELAB 0.228 0.154 0.190 0.191 0.181 0.150 0.153 0.164 —

LHU 0.203 0.126 0.160 0.149 0.139 0.130 0.145 0.118 0.089 —

BUL 0.286 0.194 0.286 0.230 0.180 0.150 0.185 0.156 0.219 0.191 —

DUJ 0.268 0.129 0.256 0.276 0.129 0.148 0.192 0.134 0.197 0.149 0.161 —

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Results of AMOVA based on 87 ISSR loci in two mountain ranges, Pyrenees and Cantabrians, at different hierarchical levels.

Source of variation d.f. SS Variance

components

% of the total

variance

F values P

Global analysis

Among populations 11 443.529 1.620 18.01 FST ¼ 0.180 ,0.001

Within populations 278 2067.018 9.220 81.99

Total 289 2510.547 10.850 100

Pyrenees

Among populations 9 360.209 1.504 15.98 FST ¼ 0.159 ,0.001

Within populations 226 1859.866 9.253 84.02

Total 235 2220.076 10.757 100

Cantabrian Mountains

Among populations 1 18.128 1.727 17.09 FST ¼ 0.171 ,0.001

Within populations 53 207.152 9.006 82.91

Total 54 225.280 10.734 100

Pyrenees vs. Cantabrian Mountains

Among mountain range 1 65.191 0.559 4.96 FCT ¼ 0.049 ,0.013

Within population among mountain range 10 378.338 1.510 14.37 FSC ¼ 0.140 ,0.001

Within populations 278 2067.018 9.227 80.67 FST ¼ 0.183 ,0.001

Total 289 2510.547 11.298 100

d.f., degree of freedom; SS, sum of squares.

AoB PLANTS 2011: plr029; doi:10.1093/aobpla/plr029, available online at www.aobplants.oxfordjournals.org & The Authors 2011 7

Escaravage et al. — Conservation genetics of a rare endemic species

D
ow

nloaded from
 https://academ

ic.oup.com
/aobpla/article/doi/10.1093/aobpla/plr029/149611 by guest on 18 April 2024



pyrenaeus exhibits an intermediate level of mean intra-
population genetic diversity (0.21 for Nei’s expected
heterozygozity HE), which conforms to the value (HE ¼

0.20) found by Nybom (2004) in a literature survey
for endemic species using dominant markers. Compar-
isons with other studies are difficult since genetic

diversity depends on numerous factors, such as
life history, breeding system, growth life forms,
geographical range and even the type of molecular
method used (Powell et al. 1996; Nybom 2004). In
spite of these complications, if we compare the
results of studies using dominant markers it appears
that the genetic diversity of A. pyrenaeus is similar to
that of other alpine species: Eryngium alpinum
L. (HE ¼ 0.20; Gaudeul et al. 2000), Trollius europaeus
L. (HE ¼ 0.22 in the Alps and 0.197 in the Pyrenees;
Despres et al. 2002), Epilobium fleischeri Hochst.,
Geum reptans L. and Campanula thyrsoides L. (HE ¼

0.19, 0.21 and 0.20, respectively; Kuss et al. 2008)
and Senecio boissieri DC (HE ¼ 0.19 in the Cantabrian
Mountains; Peredo et al. 2009). The values of HE and
P % suggest that even small populations can maintain
a high level of genetic diversity. Thus, we suggest that
no recent severe bottlenecks occurred or that genetic
diversity may not respond immediately to reduction
in population size (Young et al. 1996). However, these
small populations could also result from recently dis-
persed individuals from different population sources.
We did not find a significant correlation between popu-
lation size and genetic diversity despite the theoretical
prediction that small populations might lose genetic
variation due to genetic drift, founder effects or popu-
lation bottlenecks (Ellstrand and Elam 1993; Young
et al. 1996). Therefore, we have no indication that
natural fragmentation resulted in a pronounced loss
of genetic diversity within A. pyrenaeus populations.
Other studies on alpine plants showed an inconsistent
pattern for genetic diversity and population size rela-
tionships. Some have detected a significant correlation
(E. alpinum, Gaudeul et al. 2000; T. europaeus, Despres
et al. 2002; E. fleischeri, Kuss et al. 2008) while others
found no correlation (Hypericum nummularium L.,
Gaudeul 2006; G. reptans, Kuss et al. 2008; C. thyr-
soides, Kuss et al. 2008; Ægisdóttir et al. 2009), de-
pending on the sampling parameters used (i.e.
sample size, breeding system, marker system; Nybom
2004). The within-population diversity is also likely to
be influenced by some life-history traits of the
species such as the type of breeding system. Outcross-
ing plant species tend to have higher genetic variation
within populations, whereas populations of selfing
species or species with a mixed mating system are
often genetically less variable (Hamrick and Godt
1996; Till-Bottraud and Gaudeul 2002; Nybom 2004).
In our study, genetic variability was mostly observed
within population (80–84 %). On this basis,
A. pyrenaeus can be considered as an outcrosser as
previously found by Garcı́a (2004), which contributes
to maintaining within-population genetic variability.

Fig. 2 Neighbour-joining phenogram based on Nei’s un-
biased genetic distance for the 12 studied populations. The
corresponding valleys are indicated for the Pyrenean popula-
tions. Bootstrap values (.50) over loci (based on 1000 repli-
cates) are indicated for each node.

Fig. 3 The estimated mean logarithmic likelihood of K values
(a) and DK values (b) ranging from 1 to 14 with 20 runs for
each K.
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Genetic and geographical structure

The genetic structure of plant populations reflects the
interactions of various evolutionary processes including
the long-term evolutionary history, such as shifts in dis-
tribution, habitat fragmentation, and population isola-
tion, mutation, genetic drift, breeding system, gene
flow and selection (Schaal et al. 1998). Factors such as
isolation, small populations and gene flow may have a
major influence on the levels of genetic diversity within
and among populations (Hamrick et al. 1992). Continu-
ous distribution of plants usually weakens the differenti-
ation among populations (Wright 1951).

Our analyses of genetic structure revealed a moderate
differentiation among populations (FST ¼ 0.18). The
pattern of population differentiation is confirmed by
Fisher’s exact test, but the Mantel test revealed no cor-
relation between geographical and genetic distances.
In the two smallest populations, sampling effort was
low; however, it represented 45.5 and 25 % of the
entire population for CAU and TAC, respectively. Thus, it
is possible that not all the genetic variability was
sampled, but as the level of genetic diversity within
these populations is similar to that of larger populations
it could be assumed that the sampled individuals may
reflect the variability of the population.

In a meta-analysis of RADP-based estimates of FST

values, Nybom and Bartish (2000) and Nybom (2004)
demonstrated that FST values for long-lived perennial,
endemic and outcrossed species with wind-dispersed
seeds have the lowest FST (�0.25). The values for FST

found in A. pyrenaeus populations, although slightly
lower, were similar to these. Moreover, compared with
other alpine perennials, pairwise FST values among
populations ranging from 0.07 to 0.35 (Table 5) are
widely reported (Gugerli et al. 1999; Young et al. 2002;
Pluess and Stöcklin 2004). This intermediate level of
population differentiation, coupled with the fact that
most of the genetic variance occurs within populations
(.80 %), suggests that population isolation occurred
recently (Gugerli et al. 1999; Segarra-Moragues and
Catalán 2003; Pluess and Stöcklin 2004). This pattern
of population differentiation is commonly described in
other alpine plants and endemic species (Gugerli et al.
1999; Segarra-Moragues and Catalán 2003; Wesche
et al. 2006). Genetic variation among all the populations
or among the populations within a given mountain
range was nevertheless highly significant (P , 0.001),
which led us to conclude the occurrence of an impact
of isolation. The Mantel test failed to reveal isolation by
distance; therefore, geographical distance is not respon-
sible for the reduction in gene flow between the different
geographical locations. Although insect visitors to

A. pyrenaeus flowers have been identified (Guzman
et al. 2003), their effectiveness in pollination is
unknown and there are no available data concerning
pollen dispersal. However, given the remoteness of the
populations, their isolation in valleys and the mountain
barriers to pollinator displacements, pollen flow
between populations appears unlikely. But given the
inaccessibility of the A. pyrenaeus populations, currently
sampled populations could be linked through isolated
populations or individuals throughout the unexplored
areas. The identification of new populations would
tend to support this hypothesis. Between-population
gene flow through seed dispersal is difficult to evaluate
since no data on seed dispersal are available. Dispersal
of achenes in the Asteraceae may be species dependent,
and even in a single genus there may be variation in
pappus length, weight and their associated dispersal
capability (Andersen 1993). Thus, comparison with
other species is problematic and more studies on seed
dispersal in this species are needed. Yet, regarding the
results obtained here, it may be considered that predom-
inant wind flow in mountain areas could provide further
opportunities for long-distance dispersal.

The Bayesian-based analysis performed by STRUC-
TURE allowed the detection of five different gene pools
which did not reflect a particular structure in the land-
scape. Individuals were clustered in locations with vari-
able estimated membership coefficients (0.60–0.99).
The five genetic clusters included individuals belonging
to different locations. Only small populations (CAU and
TAC) were assigned to a single genetic group (A1). This
pattern is supported by the pattern of the NJ tree
(Fig. 2), which reveals little congruence to the geograph-
ical distance between populations.

Other studies conducted in the Pyrenees on threat-
ened endemic species showed the same genetic struc-
ture (Borderea pyrenaica Miègev. and B. chouardii
Gaussen Heslot, Segarra-Moragues and Catalán 2003;
Delphinium montanum DC, Simon et al. 2001). Past
demographic events, and current gene flow, are likely
to be responsible for this present-day structure of
genetic variation.

A number of palaeoendemic taxa from the Pyrenees,
like A. pyrenaeus, are the likely descendants of Tertiary
ancestors (Gaussen and Lerede 1948). Ice sheets rarely
reached altitudes ,1000 m in the Pyrenees and Cantab-
rians (Garcı́a-Ruiz and Marti-Bono 1994); thus, as there is
no apparent isolation by distance, it is likely that the
species became established in large populations at
lower altitudes during Pleistocene glaciations. The large
and perhaps continuous distribution of ancestral popula-
tions over lowland areas could have been favoured by
both the calcareous habit of A. pyrenaeus and the
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almost continuous presence of limestone in the Pyren-
ean piedmonts and Cantabrian Mountains with no sig-
nificant geological barriers preventing gene flow
through the population. Then the species successfully
recolonized the open territories at higher altitudes with
the retreat of the glaciers.

Implications for conservation

Within-population genetic diversity is usually needed to
ensure population establishment and long-term persist-
ence as well as long-term evolutionary potential of
restored populations (McKay et al. 2005). Even small
populations of A. pyrenaeus appear to maintain high
genetic diversity. Thus, from a genetic point of view,
they do not seem endangered. However, primarily allog-
amous species like this often experience chronic pollen
limitation due to the scarcity of both pollinators and
mates and heterospecific pollen deposition (Eckert
et al. 2010), which, in turn, reduces seedling recruitment
within populations. Moreover, the populations are geo-
graphically isolated with limited gene flow between
locations. Thus, for such small allogamous populations,
management decisions need to be taken to prevent
population extinction. Besides close monitoring of the
size and the changes in the genetic structure of all popu-
lations, two main management proposals for long-term
conservation of A. pyrenaeus populations can be
suggested.

The first should concentrate on small populations,
which may suffer from pollen limitation due to scarcity
of both pollinators and mates (further investigations
are needed to confirm this hypothesis). In order to in-
crease reproductive success of individuals in small popu-
lations and promote natural recruitment, it is possible to
saturate stigmas with cross pollen from the same popu-
lation. We also suggest that seeds be collected from
each individual, to maintain growing seedlings offsite
and use the ex situ plants materials for in situ reintroduc-
tion. This requires a good understanding of the regener-
ation niche of the species by a detailed study of sites
where individuals are currently present (soil, exposure,
etc.).

Closely related self-incompatible species may suffer
biparental inbreeding depression. Although, in the
studied A. pyrenaeus populations, individuals seem to
be distantly related (mean genetic similarity ¼
49.6 %), we have no information on the genetic and
spatial structures within populations (spatial autocor-
relation). Therefore, pollen incompatibility between
mates may occur between the more closely related
individuals. The second management proposal could
be the reinforcement of populations by seeds collected
from surrounding populations with the same gene pool

to avoid the possible negative effects of outbreeding
depression. These include collecting plants or seeds
locally, or from genetically close populations, matching
climatic and environmental conditions between collec-
tion and restoration sites (McKay et al. 2005).

Aster pyrenaeus is located in areas where pastoral, for-
estry and hunting practices have long influenced the dy-
namics of the ecosystems. In the past, open areas were
maintained within the range of A. pyrenaeus by livestock,
agricultural burning and mowing practices. The aban-
donment of pastoralism, accentuated in recent years,
leads to habitat closure due to forest propagation (and
favours the expansion of the bracken, i.e. the rhizoma-
tous fern Pteridium aquilinum, which could locally out-
compete A. pyrenaeus) (Wencewiez 2002). A national
action plan, drafted with scientists and managers, will
lead to a better understanding of the threats, in particu-
lar, competition and the vegetation dynamics, and
should lead to the proposal of management actions
favourable to the species.

Conclusions and forward look
A high within-population genetic diversity is reported for
the rare endemic A. pyrenaeus throughout its distribu-
tion range in the Pyrenees and Cantabrians, which can
be explained by the outbreeding behaviour of the
species. Despite the fact that it lives in isolated popula-
tions of different sizes, neither isolation of habitats nor
population size affected genetic variability within the
studied populations. Population differentiation was mod-
erate, suggesting a restricted gene flow between popu-
lations and indicating that population isolation is
probably relatively recent. Geographical distance was
not found to be responsible for the reduction in gene
flow between the different locations; in this context,
we assume that some long-distance dispersal mechan-
ism, even among topographically remote populations,
may be the crucial determinant for the pattern of
genetic variation found. Further research should focus
on the pollen and seed dispersal strategies in the
A. pyrenaeus populations, and studies based on other
markers from cp DNA and/or nr DNA might help to
elucidate the comprehensive phylogeography of the
species.
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toire botanique pyrénéen. Rapport final du Conservatoire botani-
que pyrénéen: 30–31.
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Pluess AR, Stöcklin J. 2004. Population genetic diversity of the
clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Ameri-
can Journal of Botany 91: 2013–2021.

Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S,
Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP and
SSR (microsatellite) markers for germplasm analysis. Molecular
Breeding 2: 225–238.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of popula-
tion structure using multilocus genotype data. Genetics 155:
945–959.

Rathcke BJ, Jules ES. 1993. Habitat fragmentation and plant-
pollinator interactions. Current Science 65: 273–277.

Raymond M, Rousset F. 1995. An exact test for population differen-
tiation. Evolution 49: 1280–1283.

Rousset F. 1997. Genetic differentiation and estimation of gene
flow from F-statistics under isolation by distance. Genetics
145: 1219–1228.

Rousset F. 2008. GENEPOP’007: a complete re-implementation of
the GENEPOP. Molecular Ecology Resources 8: 103–106.

Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA. 1998.
Phylogeographic studies in plants: problems and prospects. Mo-
lecular Ecology 7: 465–474.

Segarra-Moragues JG, Catalán P. 2003. Life history variation
between species of the relictual genus Borderea (Dioscorea-
ceae): phylogeography, genetic diversity, and population
genetic structure assessed by RAPD markers. Biological Journal
of the Linnean Society 80: 483–498.

Segarra-Moragues JG, Catalán P. 2010. The fewer and the better:
prioritization of populations for conservation under limited
resources, a genetic study with Borderea pyrenaica (Dioscorea-
ceae) in the Pyrenean National Park. Genetica 138: 363–376.

Segarra-Moragues JG, Palop-Esteban M, Gonzales-Candelas F,
Catalán P. 2007. Nunatak survival vs. tabula rasa in the
Central Pyrenees: a study on the endemic plant species Bor-
derea pyrenaica (Dioscoreaceae). Journal of Biogeography 34:
1893–1906.

Simon J, Bosch M, Molero J, Blanche C. 2001. Conservation biology
of the Pyrenean larkspur (Delphinium montanum): a case of

12 AoB PLANTS 2011: plr029; doi:10.1093/aobpla/plr029, available online at www.aobplants.oxfordjournals.org & The Authors 2011

Escaravage et al. — Conservation genetics of a rare endemic species

D
ow

nloaded from
 https://academ

ic.oup.com
/aobpla/article/doi/10.1093/aobpla/plr029/149611 by guest on 18 April 2024



conflict of plant versus animal conservation? Biological Conser-
vation 98: 305–314.

Steffan-Dewenter I, Tscharntke T. 1999. Effects of habitat isolation
on pollinator communities and seed set. Oecologia 121:
432–440.

Su Y, Wang T, Sun Y, Ye H. 2009. High ISSR variation in 14 surviving
individuals of Euryodendron excelsum (Ternstroemiaceae)
endemic to China. Biochemical Genetics 47: 56–65.

Till-Bottraud I, Gaudeul M. 2002. Intraspecific genetic diversity in
alpine plants. In: Körner C, Spehn EM, eds. Mountain biodiversity.
A global assessment. Berlin: Parthenon Publishing, 23–34.

Van Dyke F. 2008. Conservation biology: foundations, concepts,
applications, 2nd edn. Berlin: Springer.

Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I. 2002. Data
from amplified fragment length polymorphism (AFLP) markers
show indication of size homoplasy and of a relationship
between degree of homoplasy and fragment size. Molecular
Ecology 11: 139–151.

Vucetich JA, Waite TA. 2003. Spatial patterns of demography and
genetic processes across the species range: null hypotheses
for landscape conservation genetics. Conservation Genetics 4:
639–645.

Weir BS, Cockerham CC. 1984. Estimating F-statistics for the ana-
lysis of population structure. Evolution 38: 1358–1370.

Wencewiez L. 2002. Analyse de la dynamique de la végétation sur
les stations d’Aster des Pyrénées (Aster pyrenaeus DC) en rela-
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